What is Embedded Analytics?
Embedded analytics is the technological capability to include analytics features and functions as an inherent part of another application.
According to the Dresner Wisdom of Crowds® 2023 Embedded Business Intelligence Market Study, current use of embedded BI is at 49 percent and adoption plans remain strong. Additionally, eighty-six percent of industry respondents say embedded BI is critical or very important.
Embedded Analytics Meaning
An embedded analytics for SaaS solution enables users of a SaaS application to harness the power of business intelligence to analyze the data they create inside that app. This eliminates the need to export data only to import it into a separate business intelligence tool.
12 Crucial Embedded Analytics Features
1. Self-Service, Easy-to-Build Charts & Dashboards
Users should be able to simply point and click to build beautiful data visualizations. A self-service analytics chart builder should be easy to use. User experience is the most important aspect. So be sure you can teach your users to learn the dashboard builder.
Read about how Qrvey allowed Impexium to go to market quickly and get analytics into the hands of their customers. The company needed to replace their legacy analytics platform with a modern solution with self-service capabilities, responsive design, and data automation.
2. Any Type of Data
More than 70% of all business data is never used for analysis because most traditional analytics tools only work with structured data. To gain vital insights, you must be able to integrate all of your data, including semi and unstructured data sources like forms and images.
3. Workflow & Automation
It’s great if users can discover new insights with your analytics platform – but better yet if the platform does the discovering for users! Workflow automation can alert users when conditions are met, and workflows can be triggered if thresholds are exceeded.
With self-service workflow builders, even non-technical users can easily automate common tasks. Automation can be triggered automatically as new data is received or when user-defined metrics and thresholds are met. This empowers data-driven application development.
Add powerful business logic to your workflows and applications with conditional rules and ML models. Only with automation can your analytics platform be working for you 24 hours a day.
4. Shareable Insights
Once users have obtained valuable insights, they should be able to easily share and disseminate them. Look for features such as the ability to create multi-page and multi-tab reports that include full interactivity and data security built right in. With content deployment features, you can roll out templates and dashboards to specific tenants at your own pace.
5. Interactivity such as Drill Down & Drill Through
Users should be able to interact with reports to easily access additional info as needed. Drill down takes users from a high level to a more granular one, allowing users to go deeper into the data, for example from country to state.
Drill through takes the user to a report relevant to the data being analyzed, passing to another report while still analyzing the same data set.
Finally, advanced filtering options enable users to refine the data that is displayed in reports.
6. Data Security & Managed Access Controls
Record- and column-level security allows administrators to restrict data access at granular levels in a dataset, so each user gets only the information they are authorized to see. Grant access to data, insights, and applications according to each user’s role.
Security tools and features must support multi-tenant SaaS applications and ideally will inherit your security model, including all of your rules and policies. Seamlessly integrate analytics into your SaaS application with single sign-on.
7. Deployable to Your SaaS Platform Environment
Being able to deploy the embedded analytics software to private environments for maximum data security is a crucial feature in maintaining control over data. Additionally, this method will inherit your existing security policies rather than forcing you to rely on a third party to manage your data.
By deploying into YOUR cloud, your data never leaves your account, enabling you to keep your data in your environment under your control.
To fit into software development lifecycles (SDLC), you should also be able to deploy to code repositories and multiple development environments.
8. White Labeling & UI Customization
There are many benefits to embedding a third-party product instead of building everything in-house. But your customers don’t need to know. Embedded analytics should be fully customizable, including updating the look with CSS and themes to ensure seamless blending into your SaaS application. The user experience should be consistent and white-label embedded analytics is the way to go.
The Dresner Wisdom of Crowds® Business Intelligence Market Study recognizes the importance of customization abilities. The Study rates vendors using a 33-criteria evaluation model, including “customization and extensibility” within the category of “quality and usefulness of product.”
9. Native Multi-Tenancy
Out-of-the-box multi-tenancy is essential for SaaS use cases. This also directly affects the time to market, as many solutions require extensive custom development to force multi-tenancy. Learn more on multi-tenant architecture for embedded analytics.
10. Unlimited User Licensing
Predicting usage within a SaaS application is nearly impossible, so an ideal solution will provide unlimited user licensing. Most traditional business intelligence solutions can only offer user licensing and that tends to be a blocker to adoption.
User-based licensing is a significant cost driver that can prevent you from achieving a positive ROI.
11. Everything is Embeddable
A proper embedded analytics solution must provide multiple components that are fully embeddable using Javascript and avoiding iframes for a seamless user experience. You should be able to embed dashboard and chart widgets, dashboard and chart builders, data management, automation rule management, and more.
12. Easy Data Integration
Pre-built database connectors and easy-to-use APIs are essential to rapid integration and fast time to market. Additionally, native support for both structured (SQL) and semi-structured (NoSQL) data means more flexibility, reducing the need for useless transformations and wasted processing.
We also have a guide for what features to consider when evaluating embedded analytics vendors.
Embedded Analytics Benefits
Embedded analytics for SaaS applications can provide significant advantages for both the software vendor and end users. With embeddable analytics capabilities like dashboards, reporting, and predictive insights into a SaaS application, vendors can enhance their offerings and provide additional value for customers.
Increase revenue
Monetizing analytics in several ways, through premium user tiers that unlock more advanced capabilities, add-on products that extend functionality, and professional services to help customers analyze their data alongside professionals.
Embedded analytics in business processes presents new revenue streams beyond standard software subscriptions.
Paddle, a provider of payment infrastructure for SaaS companies, conducted a study of 512 SaaS companies. The results show monetization was four times more efficient than acquisition in improving growth. Additionally, it is twice as efficient than efforts to improve retention.
Enhance customer satisfaction & engagement
Provide customers with a seamless and intuitive user experience. Allow them to access and interact with data and insights within their workflow without having to switch to a separate analytics tool or platform.
Increase customer satisfaction & retention rates
Provide customers with valuable insights to help them solve problems and achieve their goals. Higher NPI scores result from empowering users to get answers to their questions quickly without the need for technical skills or leaving the software.
Additionally, the more users can do with a SaaS application, the more they rely on it. As customers are satisfied with your application and rely on it as an integral tool in their business, they’re likely to remain loyal customers.
Differentiate from competitors
Offer a unique and innovative value proposition that can help your users enhance decision-making and improve performance.
Access real-time data.
Embedding analytics also allows for access to real-time data within the application environment users are already working in. Rather than exporting data to analyze in another tool, insights are available immediately within the workflow.
This leads to stickier applications that users rely on more heavily as a single source of truth.
Avoid building in-house & maintain focus on your roadmap.
Every hour you spend adding analytics to your software is an hour not spent focusing on your core competitive differentiation (that’s assuming that you’re not an analytics provider like Qrvey!) Building analytics will also put a drag on your entire product roadmap as valuable resources are slowly siphoned away.
By embedding analytics functionality from a third-party vendor, you avoid building in-house. This accelerates your time to market. Purchasing a third-party product also lowers development costs.
What Are the Common Challenges and Pitfalls of Embeddable Analytics
Server Fees & User-Based Licensing
Some traditional BI solutions that began with a dependence on server installations may still require licensing for each server their software is installed on. Trying to integrate with a software development process or scale a cluster becomes cost-prohibitive over time.
Additionally, user-based licensing is a significant cost driver and often an underappreciated cost over time. Companies that try to “start small” rarely realize the ROI of their investment.
Data Access & Synchronization
Odds are that your app uses more than one type of data… and if it doesn’t now, it certainly might in the future. Therefore, your analytics solution must be able to work with any type of data and to handle the complexity of combining multiple sources.
When embedding analytics, you don’t want to be locked into one architecture or have to go through the hassle of filing down a square peg to fit into a round hole.
Read about how Qrvey helped Global K9 overcome the struggle of analyzing all the data gathered via video capture. With Qrvey, Global K9 was able to definitively prove to the airlines and government agencies that their canine teams can safely process more tonnage of cargo than traditional x-ray technologies.
Forcing Data Transfer to a Third-Party Cloud
An ideal solution keeps your data right where it is…in your environment under your control. You’ll need to do a comprehensive security audit if you send your customer’s data to a third-party cloud.
No Support for Development Environments
As a SaaS company, you have a development lifecycle that is different from an internal IT department in a large company. When you cannot install your embedded analytics software in several development environments, you’re taking chances with your production experience and ultimately your user experience.
Lack of Built-in Scalability & Performance
You want your SaaS application to grow and expand, but embedded analytics solutions that don’t scale easily or natively often create a bottleneck that becomes expensive to fix. Ideally, you should be able to scale without a costly, time-consuming rebuild. As your app scales, the increase in costs should be commensurate with the growth. To achieve the next 15% of growth shouldn’t increase costs 80%.
Additionally, while scaling to accommodate growth, latency shouldn’t increase.
Not AI Ready
Many solutions offer some functionality that integrates AI, but the acronym AI is often used quite loosely. Be sure it’s something that adds value over the long run as AI technology is advancing fast.
iFrame Embeds
While many BI tools can embed dashboards and some can embed individual widgets (charts), the functionality fails to meet the needs of SaaS providers.
For example, many traditional BI tools rely on iframes for their embeds. Most infosec teams struggle to approve iframe-based solutions due to security concerns. Iframe-based dashboards are also rarely mobile responsive.
Others that do support JavaScript widgets may lack customization options. And some vendors will offer a combination of JavaScript and iFrame based widgets, further complicating integration into a SaaS application. Javascript-based widgets are the preferred method.
Embedded Analytics Use Cases
SaaS applications exist in all industries today, therefore embedded analytics serve a great need across any industry. Nearly all SaaS applications are expected to have a strong analytics offering, so if you only offer static, generic dashboards, your customers are likely left wanting more.
Following are some popular industry use cases.
Embedded Analytics for SaaS Applications
Reporting features for SaaS analytics within SaaS applications may seem like table stakes, but it’s often an area where SaaS companies can separate themselves from their competition. Qrvey allows SaaS companies to create richer products and bring them to market faster while lowering development costs.
Building embedded analytics in-house is a time-consuming and roadmap-intensive feature that SaaS companies don’t need to undertake.
Healthcare Analytics
With a focus on security, Qrvey’s healthcare analytics solutions enable teams to analyze data within your cloud environment.
Healthcare solutions often include various types of data – SQL, NoSQL, and unstructured data sources like forms and images. It’s vital to connect to any data source, including FHIR-Compliant patient health records. For comprehensive insights, you need to analyze multiple healthcare data sources on a single dashboard. Your analytics solution must be fully compliant with the HL7 FHIR patient medical record standards to integrate within healthcare analytics tools.
By analyzing many different data sources, you can gain insights across an entire practice.
- Uncover patient trends by ingesting and analyzing FHIR analytics data and conducting granular analysis.
- Analyze patient data to find patterns, predict health risks, and create treatment plans.
- Analytics can help doctors diagnose diseases more accurately and quickly by using algorithms and machine learning to analyze symptoms, test results, and medical images.
Analytics can also help doctors provide personalized and proactive care to their patients, such as identifying patients at risk of developing certain diseases.
For clinical trials
Examine large data volumes to spot trends early with in-depth analysis of trial spending in real-time. Also, you can:
- Improve the quality of care by collecting real-time patient feedback and analyzing outcomes as the data comes in.
- Boost evidence-based decision-making by empowering researchers and policymakers to analyze vast amounts of clinical data. This leads to identifying trends, evaluating treatment effectiveness, and developing guidelines for best practices.
Healthcare SaaS vendors can also use analytics to power improvements in operational efficiency. Insights from analyzing patient flow, staff productivity, and equipment usage can identify bottlenecks, delays, or waste, and lead to enhanced efficiency and reduced costs.
Detect and prevent fraud
Prevent abuse by analyzing claims data to identify suspicious activities, such as billing irregularities, duplicate claims, or false diagnoses. This approach can save money for healthcare organizations as well as protect patients from unnecessary procedures or treatments.
Predict Patient Outcomes
Analytics can also enable healthcare providers to predict patient outcomes and anticipate healthcare needs. Analyzing information, such as medical records, prescriptions, or lifestyle data, can help doctors find patients at high risk who may need extra care or check-ups. This proactive approach can allow for timely interventions, reducing hospital readmissions and improving patient satisfaction.
Predictive analytics can also help healthcare providers forecast demand and supply, resulting in improved planning and resource allocation.
Financial Analytics
Transform your financial data into actionable insights with financial analytics software. Visualizing financial data allows for easier comprehension and interpretation of complex data sets. Instead of deciphering numbers and tables, visual representations provide a more intuitive understanding of financial trends and performance.
With interactive visualizations, users can manipulate and explore financial data, uncovering hidden insights and patterns that may not be apparent in traditional tabular formats. By embedding interactive analytics directly into financial platforms, you can provide users with immediate access to analytics within familiar systems and accelerate time-to-value.
Financial organizations report paying more than $4 fighting fraud for every $1 of fraud loss, leaving a huge opportunity for smarter analytics to uncover potential fraud. AI in particular has great potential to identify patterns and reduce false positives.
With granular analysis of large data sets, you can uncover trends and find anomalies. By connecting to any data type – SQL, NoSQL, and unstructured data sources like forms and images – you can analyze multiple financial data sources on a single dashboard. Combine data sources to unify financial software and achieve performance insights across an entire organization.
With maximum data security, teams can safely analyze sensitive data, from individual records to entire financial practice performance all within your SaaS platform.
With an API layer built for rapid development, data can be pushed directly from the source for real-time analysis within your financial analyst software solution. Automation and alerting help keep you up-to-date and keep your processes in line.
Logistics Analytics Solutions
Organizations generate large amounts of data around the procurement, processing, distribution, and transportation of goods. In particular, IoT sensors used to monitor manufacturing and logistics equipment generate large volumes of data.
Supply chain analytics involves collecting and analyzing data across the supply chain to gain visibility, identify insights, and optimize planning and execution. When embedded into supply chain apps, logistics analytics solutions empower you to gain insight and extract real value from that vast amount of information. Improve operations with better process planning and forecasting.
AI is changing the face of supply chain analytics platforms. AI and machine learning can automate the analysis of large volumes of historical data and provide real-time insights as well as forward-looking decision-making. RFID data can also be analyzed for shelf-space optimization, dynamic pricing, and out-of-stock prevention. Make the most efficient use of warehouse space.
Transportation analytics and GPS technologies can enable you to minimize travel distances, reducing fuel consumption and improving driving efficiency. Supply chain analytics software can quickly surface patterns and trends and offer embedded decision logic to improve efficiency, increase productivity, and dramatically lower costs in everything you do.
IT and Cybersecurity Analytics Solutions
IT software vendors are the glue that help companies plan, execute, and complete successful digital transformations. According to BetterCloud’s 2023 State of SaaSOps report, organizations now use an average of 130 apps. This represents an increase of 18% from the previous year, despite 40% of IT professionals saying they consolidated redundant SaaS apps.
As the number of cloud services has exploded, the complexity of integration options has also grown. With substantial complexity in the age of digital transformation, the need for powerful, flexible, and scalable IT analytics solutions continues to increase.
Cybersecurity analytics platforms must uncover misconfigurations and detect indicators of compromise to mitigate risks, but unfortunately, they’re often overrun with false positives. By enabling embedded analytics of real-time data, cybersecurity platforms can improve accuracy.
With the explosion of SaaS apps, IT costs are also rising. Analytics can equip organizations with the insights needed to reduce unnecessary costs and ensure that spending is optimized. Additionally, quantify the business value of IT to demonstrate ROI.
Analytics can also provide vital KPIs such as system response time, availability, and user satisfaction. Optimize IT processes like incident handling and predict future IT resource needs based on demand forecasts.
Embedded Analytics Requirements
To support a strong analytics feature set within a SaaS application, the data layer must first be ready to handle multi-tenant reporting.
READ: Our guide to the best embedded analytics tools
Multi-Tenant Data Layer
Having a standard, out-of-the-box database or data warehouse is not enough to achieve a multi-tenant embedded analytics function. You will need a multi-tenant data lake that handles the security, mapping of roles and permissions, and an easy-to-use to use API suite so that integration is fast.
Being able to host this solution yourself is also a key to achieving the security that most SaaS companies require. While there are no shortage of third party, cloud host data management systems out there, as soon as your data leaves your environment it poses a security risk. Are you ready to be responsible for a third party platform?
And since data comes from many sources these days, how flexible the data solution is becomes an important question.
- Does it force every tenant to use the same data model or can it be customized?
- Does it only work with structured/relational data or can it handle semi/unstructured data?
- Does it only work with prebuilt data connectors or is there an API to push on custom intervals?
Front End Visualizations
Having embedded dashboards is not enough. For true embedded analytics within a multi-tenant SaaS application, you’ll need:
- Embedded data visualizations: full dashboards AND individual charts
- Embedded dashboard builders
- Embedded chart builders
- Javascript components, not iFrames
- White label support: full CSS controls, not just changing logos
- Automation and alerting that users can build themselves
What are Embedded Data Widgets?
Widgets are simple, intuitive applications independent of the body of a website or device but easily embedded into it. Widget types include information, collection, control and hybrid. Data widgets display one object, or a list of objects using live data that may be programmed to respond to website identity. Types of data widgets include data view, data grid, template grid, and list view.
Traditional Business Intelligence (BI) vs Embedded Analytics
Most BI companies were founded between 2000 and 2010 and targeted enterprises needing to analyze data internally. SaaS wasn’t yet the dominant force it is today, so these systems were designed to be installed in servers owned by each customer and managed by a database administrator from the IT department.
In, “How to Select an Embedded Analytics Product,” author Wayne Eckerson writes, “Most BI tools were not designed for embedding; converting a stand-alone, commercial product into one that can be easily embedded in both single- and multi-tenant environments with full fidelity is challenging.”
As the number of SaaS products each company uses has exploded, analytics providers have struggled to pivot from a server-focused software product to a cloud-focused product. The following are four primary ways embedded analytics vs embedded BI compare:
Traditional BI software | Embedded Analytics | |
Developer Friendliness | Traditional BI software includes self-service tools and embedded dashboards only.It never provided the developer audience with the necessary tools (widgets, APIs, security options, etc). Developers have no chance to create multi-tenant analytics that power end-user customizations. | Built from the ground up for developers, with an API-first approach with no-code widgets that deliver real value in terms of time and cost savings. Read: Our Best Embedded Analytics Tools |
Costs | Traditional BI systems sell server licenses and user licenses. It’s much tougher for SaaS providers to predict usage across a platform that has 500+ customer tenants on it. | Embedded analytics aligns with SaaS providers’ by charging based on value. To that end, unlimited users is the only way to scale an embedded analytics feature. |
Architecture | Traditional BI software is particularly difficult to embed within a multi-tenant SaaS app. BI apps are server-based systems that were never meant to scale with cloud platforms like AWS without costly server clustering. | Qrvey’s embedded BI deploys into your cloud environment with a full suite of security tools and features that support multi-tenant SaaS applications. Your data never leaves your account. |
Data Readiness | Embedded analytics aligns with SaaS providers by charging based on value. To that end, unlimited users is the only way to scale an embedded analytics feature. | Analyze various types of data – SQL, NoSQL, and unstructured data sources like forms and images. Qrvey is also a multi-tenant-ready data lake built exclusively for SaaS applications. |
Choosing the Right Solution
The right embedded analytics solution depends on several factors, but in our experience, the successful solution will
- include a multi-tenant data lake purpose-built for multi-tenant analytics.
- an intuitive user experience
- be deployed and self-hosted to maximize data security
- have a robust API suite
- have full white-label capabilities
- most importantly, enable SaaS users to analyze data according to their own business processes
Embedded Analytics Applications
Qrvey is the only complete embedded analytics for SaaS solution to rapidly add a modern analytics layer with rich capabilities that are easily configurable for all types of users. By using Qrvey’s platform to embed analytics within their products, SaaS firms can deliver greater value, unlock new revenue streams, and ensure greater customer loyalty.
Unlike traditional BI solutions, which typically require integrating numerous, separate functions, Qrvey delivers a complete, no-code, end-to-end platform that deploys entirely within our customers’ cloud environments, lowering the time and cost of development, deployment, and maintenance.
It is the best-embedded analytics platform built specifically for cloud-native environments, leveraging the best of cloud technology to offer rapid deployment of self-service analytics across any type of data.
Qrvey’s platform creates the most cost-effective embedded analytics solution on the market, driven by a team with decades of experience in the analytics industry. Qrvey has been recognized as a leader by Dresner Advisory Services and voted a high performer on G2.
The Process of Embedding Analytics
The following describes the initial onboarding process for new customers of the Qrvey platform.
Install Qrvey Software
- Install and configure the Qrvey platform in your cloud platform. (we do free trials too FYI)
Create a new application
The Qrvey platform offers a wide range of features that can be used in a Qrvey application, including web forms, data connections, analytics, and automation.
- Create a connection to a data source
- Create a data set
- Build a dashboard
- Publish the application
- Embed the Qrvey application into your host application
Obviously, there are a few more steps, but that’s the idea. Our goal is to get you up and running fast.
Read more about:
- why SaaS companies choose Qrvey for embedded analytics
- The transformative power of embedded analytics
- The best embedded analytics tools
If you are interested in learning more about our embedded analytics solution or want to see how it can work for your product, please contact us for a free demo.
Brian is the Head of Product Marketing at Qrvey, the leading provider of embedded analytics software for B2B SaaS companies. With over a decade of experience in the software industry, Brian has a deep understanding of the challenges and opportunities faced by product managers and developers when it comes to delivering data-driven experiences in SaaS applications. Brian shares his insights and expertise on topics related to embedded analytics, data visualization, and the role of analytics in product development.
Popular Posts
Why is Multi-Tenant Analytics So Hard?
BLOG
Creating performant, secure, and scalable multi-tenant analytics requires overcoming steep engineering challenges that stretch the limits of...
How We Define Embedded Analytics
BLOG
Embedded analytics comes in many forms, but at Qrvey we focus exclusively on embedded analytics for SaaS applications. Discover the differences here...
White Labeling Your Analytics for Success
BLOG
When using third party analytics software you want it to blend in seamlessly to your application. Learn more on how and why this is important for user experience.